Exercise 43

Use logarithmic differentiation to find the derivative of the function.

$$
y=x^{x}
$$

Solution

Take the natural logarithm of both sides and use the properties of logarithms to simplify the right side.

$$
\begin{aligned}
\ln y & =\ln x^{x} \\
& =x \ln x
\end{aligned}
$$

Differentiate both sides with respect to x.

$$
\begin{aligned}
\frac{d}{d x}(\ln y) & =\frac{d}{d x}(x \ln x) \\
\frac{1}{y} \cdot \frac{d}{d x}(y) & =\left[\frac{d}{d x}(x)\right] \ln x+x\left[\frac{d}{d x}(\ln x)\right] \\
\frac{1}{y} \cdot \frac{d y}{d x} & =(1) \ln x+x\left(\frac{1}{x}\right) \\
\frac{1}{y} \frac{d y}{d x} & =\ln x+1 \\
\frac{d y}{d x} & =y(\ln x+1) \\
& =x^{x}(\ln x+1)
\end{aligned}
$$

